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Abstract  

This work discusses an effective explicit-implicit time-
marching procedure with adaptive time integration 
parameters to analyze wave propagation models. This 
approach has two parameters that are locally evaluated, 
providing different spatial and temporal distributions. The 
first parameter ensures stability and reduces dispersion 
errors, defining the explicit/implicit subdomains of the 
model. The second parameter controls the dissipative 
properties of the methodology, allowing spurious high-
frequency modes to be properly eliminated, as well as 
reducing amplitude decay errors. The discussed approach 
diminishes the computational effort of the analysis by 
obtaining reduced systems of equations, making it an 
efficient adaptive single-step procedure. Additionally, the 
methodology offers enhanced accuracy and enables 
advanced controllable algorithmic dissipation in higher 
modes, linking temporal and spatial discretization. It is also 
a self-starting, entirely automated process that has been 
tested through benchmark analyses, demonstrating its 
effectiveness for real-world applications in the OIL & GAS 
industry. 

Introduction 

Time-dependent hyperbolic equations have a wide range 
of applications in science and engineering, but obtaining 
analytical solutions for these equations is often impractical. 
Therefore, numerical methods, particularly step-by-step 
time integration algorithms, are commonly used to obtain 
approximate solutions. The literature describes many 
classical explicit and implicit algorithms for time-marching 
analysis [1-4], each with their own advantages and 
drawbacks. Explicit algorithms are generally preferred due 
to their lower computational costs, but stability conditions 
can limit their use. On the other hand, implicit algorithms 
may be defined unconditionally stable, but they come with 
higher computational costs. Various procedures can be 
applied to improve the accuracy and stability of time-
integration algorithms, including subcycling, mass scaling, 
high-order schemes, and automatic time step control. 
Ongoing research in this field has resulted in several time-
marching techniques available today for transient analyses 
[5-11]. 

This work presents an explicit-implicit time-marching 
algorithm that combines the advantages of both explicit 

and implicit methods. By treating "stiffer" subdomains with 
implicit integrators and "flexible" subdomains with explicit 
integrators, stability requirements are easier to fulfill, 
allowing larger time steps to be employed. This approach 
also results in reduced systems of equations, allowing for 
more efficient analyses. Previous works on explicit-implicit 
time-marching techniques focused on merging different 
integration procedures, but this work considers a single 
time-marching framework and a model/solution-adaptive 
explicit-implicit time integration procedure. This time-
marching algorithm selects time integration parameters at 
a local level, which allows for different values to be used 
for each element of the model and each time step. The 
procedure is adaptive and computes the integration 
parameters automatically, taking into account the 
properties of the discrete model and the evolution of the 
computed fields. As a result, the approach is highly flexible 
and effective. 

The methodology employs two time integration 
parameters, 𝛾 and 𝛼, which are used to define the explicit/ 
implicit and dissipative/non-dissipative elements of the 

model, respectively [5]. The computation of 𝛾 ensures 

stability and enhanced accuracy, while the evaluation of 𝛼 
aims to eliminate the influence of spurious modes. The 
approach is non-iterative, directly computing the values of 
the time integration parameters based on local properties 
of the spatial discretization, the adopted time step, and 
previous time-step results. It is also self-starting, 
eliminating the need for cumbersome initial procedures.  

In geophysics, there is often a need to analyze 
heterogeneous domains with multiple layers of various 
materials. Thus, the discussed methodology automatically 
treats the more 'flexible' layers of the geological model 
explicitly and the others implicitly, allowing larger time-step 
values to be considered, increasing the efficiency of the 
analyses. The evaluation of an optimal time-step value, 
which allows the most efficient distribution of explicit and 
implicit elements along the model, is also considered here, 
guaranteeing that the discussed explicit-implicit approach 
is always more efficient than an entirely explicit or implicit 
analysis.  

Governing equations and time integration strategy 

The semi-discrete system of equations governing a wave 
propagation model may be written as: 

𝐌�̈�(t) + 𝐂�̇�(t) + 𝐊𝐏(t) = 𝐅(t) (1) 

where 𝐌, 𝐂, and 𝐊 stand for the so-called mass, damping, 
and stiffness matrices of the model, respectively, which are 
here computed considering the finite element method [12], 
𝐏(t) stands for the unknown pressure field (with overdots 

indicating its time derivatives), and vector 𝐅(t) represents 
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external applied sources. The initial conditions are defined 

as 𝐏0 = 𝐏(0) and �̇�0 = �̇�(0). 

The time integration parameters of the methodology are 
locally and adaptively computed based on the properties of 
the discretized model and the computed responses, 
allowing for more accurate solution procedures. In this 
time-marching procedure, the following recurrence 
equations are considered: 
 

(𝐌 +
1

2
Δt𝐂 +

1

2
γnΔt2𝐊) �̇�n+1 = ∫ 𝐅(t) ⅆt

tn+1

tn +

𝐌�̇�n −
1

2
Δt𝐂�̇�n − 𝐊(𝐏n +

1

2
αnΔt2�̇�n)  

(2a) 

𝐏n+1 = 𝐏n +
1

2
Δt�̇�n +

1

2
Δt�̇�n+1 (2b) 

where Δt represents the time-step of the analysis. It is 
worth noting that this single-step method depends only on 
the first temporal derivative of 𝐏, and does not require the 
calculation of its second temporal derivative. This property 
makes it a truly self-starting method, eliminating the need 
for cumbersome initial procedures like computing initial 
second temporal derivatives or multistep initial values.  

In the discussed adaptive approach, the time integration 
parameters of the method are spatially and temporally 

computed to locally better explore specific features (i.e., αe
n 

and γe
n are defined, where “e” stands for the element of the 

adopted spatial discretization).  

In this case, the γe
n parameter controls the definition of 

explicit and implicit subdomains, with explicit elements 
being generated when γe

n = 0 and implicit elements being 

engendered when γe
n ≠ 0. If γe

n = 0 is adopted and lumped 
mass and damping matrices are considered, the local 
system of equations becomes explicit with a diagonal 
effective matrix. For implicit elements, better accuracy is 
achieved when 0 < γe

n < 1/2 is considered. In fact, for αe
n =

1 and γe
n = 0, the proposed technique reproduces the main 

features of the central difference method (CD), and for 

αe
n = 1/2 and γe

n = 1/2, it reproduces the trapezoidal rule 
(TR). Thus, for 0 < γe

n < 1/2 and αe
n = 1 − γe

n (which 
represents a non-dissipative formulation), an intermediate 
methodology between the CD and the TR is enabled. As 
the CD provides negative period elongation and the TR 
provides positive period elongation, reduced period 
elongation errors occur for 0 < γe

n < 1/2, enabling a more 

accurate technique. Here, γe
n is determined as indicated in 

equation (3), which is based on the maximum sampling 

frequency of element Ωe
max

= ωe
maxΔt, where ωe

max stands 
for the highest natural frequency of the element.  

If Ωe
max

≤ 2, γe
n = 0 (3a) 

If Ωe
max

> 2, γe
n =

1

2
tanh (

1

4
Ωe

max) (3b) 

The proposed implicit solution is always stable, and the 
proposed explicit analysis is conditionally stable, with Ω𝑐 =
2 (i.e., the same critical value as that of the CD). Thus, by 

using this criterion to compute γe
n, the explicit-implicit 

algorithm is guaranteed to be stable. If the element's 
properties remain constant throughout the analysis (as is 
the case in standard linear analyses), the values of γe

n will 
remain the same over time. Consequently, if the matrices 

of the model do not change, the time integration parameter 

γe
n will also remain unchanged, and the effective matrix of 

the model will remain constant throughout the analysis. In 
this situation, the effective matrix can be calculated/treated 
only once, resulting in a more efficient approach. 
Moreover, incorporating explicit elements in the analysis 
leads to a portion of the effective matrix consisting only of 
diagonal entries. These entries can be easily eliminated 
from the global system of equations, resulting in a reduced 
dimension and computational effort required for its 
solution. Hence, the proposed hybrid explicit-implicit 
analysis offers a stable algorithm that is associated with a 
smaller system of equations, making it more efficient than 
conventional implicit methods. It is crucial to emphasize 
that this automatic reduction of the global system's 
dimension is achieved by considering only the diagonal 
terms of the effective matrix without any predetermined 
subdomains or input information from the user, which may 
not be practical for intricate geophysical models. 

The αe
n parameter controls the dissipative properties of the 

technique and can be adapted according to the evolution 
of the solution, introducing numerical dissipation 
when/where necessary to reduce spurious non-physical 
oscillations. The local computation of αe

n aims to optimize 
the introduction of numerical damping into the analysis, 
minimizing its negative effects. 

For αe
n = 1 − γe

n, numerical dissipation is not introduced 

into the analysis; for αe
n > 1 − γe

n, however, numerical 
damping occurs. This feature may be then explored, 
allowing dissipation to be locally activated when/where 
necessary (i.e., when oscillations occur) and deactivated 
when/where not needed. In this sense, a permanent 
algorithmic dissipative pattern can be avoided, and 
excessive numerical damping errors prevented. This local 
activation may be carried out based on an oscillatory 
criterion, where the αe

n parameters of the elements 
surrounding an oscillating degree of freedom are modified 
to introduce numerical dissipation. If no oscillatory behavior 
is observed, αe

n = 1 − γe
n is used. This process involves 

computing an oscillatory parameter φe
n for each element 

and time step of the analysis, and, if φe
n = 0 (i.e., no 

oscillation is perceived), αe
n = 1 − γe

n, otherwise, αe
n > 1 −

γe
n, as indicated in equation (4): 

 

φe
n = ∑ ||𝑢𝑖

𝑛 − 𝑢𝑖
𝑛−2| − |𝑢𝑖

𝑛 − 𝑢𝑖
𝑛−1| −

𝜂𝑒

𝑖=1

|𝑢𝑖
𝑛−1 − 𝑢𝑖

𝑛−2|| /|𝑢𝑖
𝑛 − 𝑢𝑖

𝑛−2|  
(4a) 

If φe
n = 0, αe

n = 1 − γe
n (4b) 

If φe
n ≠ 0, αe

n = 2 [2γe
n + (1 +

ξeΔt

2ρe
) (

2

Ωe
max)

2
]

1
2⁄

−

1 − γe
n −

ξeΔt

2ρe
(

2

Ωe
max)

2
 

(4c) 

where ξe = ςe/(2ρe𝜔𝑒
𝑚𝑎𝑥) and ρe and ςe stand for the 

physical properties of the medium that define matrices 𝐌 

and 𝐂, respectively. Equation (4c) is formulated so that 
maximal numerical dissipation is applied for the higher 
frequency of the element [5], turning this procedure very 
effective dissipating the influences of spurious high-
frequency modes. 
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In the discussed explicit-implicit analysis, by increasing the 
adopted time-step value, less time steps are necessary for 
solution (given a fixed period of analysis), which is positive 
regarding efficiency aspects; however, simultaneously, by 
enlarging Δt, more implicit elements take place along the 
discretized model, increasing the computational effort 
related to the solver procedure. Thus, an optimization 
algorithm can then be applied in order to compute an 
optimal Δt value, regarding computational efficiency. In this 
work, the Particle Swarm Optimization (PSO) [13] 
algorithm is used, establishing an optimal Δt value by 
minimizing the expected total number of operations 
involved in the solution process. 

Numerical applications 

In this section, we examine two numerical examples that 
briefly demonstrate the good performance of the discussed 
hybrid technique. The first example investigates the 
resulting pressure field that is due to an impulsive load on 
an infinite domain, while the second application analyzes a 
geophysical model. For this first example, an analytical 
solution is available [14], allowing a better comparison of 
the obtained results through different time-domain solution 
procedures. The second example is a benchmark case, 
created by the PETROBRAS research laboratory, of the 
Búzios region, where ten well-defined stratified layers are 
present [15]. 

The performance of the discussed explicit-implicit adaptive 
formulation (which is here referred as “new”) is compared 
to that of standard explicit methods. The explicit 
approaches used in this comparison are the classic Central 
Difference (CD) method, the explicit generalized α (EG-α) 
method developed by Hulbert and Chung [2] (with a value 
of ρb = 0.3665 adopted to minimize period elongation 
errors, as recommended by the authors), and the Noh-
Bathe (NB) method [4] (with a value of p = 0.54, as 
recommended by the authors). The maximum possible 
time-step value for stability is applied for these explicit 
methods (taking into account an element level evaluation), 
to ensure more efficient analyses for each approach. For 
the reported explicit-implicit approach, an optimal time-
step value is evaluated for each analysis, as discussed at 
the end of the previous section. 

Application 1 

In this first example, an infinite acoustic model is subjected 
to an impulsive source. The model is discretized 
considering a 5m x 5m square mesh of 310,253 linear 
quadrilateral elements. Perfectly matched layers (PMLs) 
are considered at the borders of the model to simulate the 
infinite medium. 

Tab.1 outlines the performances of the techniques that are 
employed in this study. As one can observe, the discussed 
hybrid approach yields the most accurate results, also 
providing the most efficient computations (which are 
performed on an Intel Core i7 -7700 3.60GHz processor 
with OpenMP parallelization utilizing 8 threads). For the 
referred explicit-implicit analysis, an optimal time-step of 
5.3831s is obtained, which is almost 3 times larger than the 
computed maximal possible time-step for the CD. For this 

optimal Δt value, the adopted mesh becomes composed of 
94.974% explicit elements and 5.026% implicit elements.   

 

In Figure 1, time-history results at a location 1 meter away 
from the applied source are depicted, further illustrating the 
better accuracy of the discussed adaptive explicit-implicit 
approach. As one can observe in this figure, the referred 
adaptive formulation is able to very properly dissipate 
spurious numerical oscillations, resulting in much better 
responses than those provided by standard techniques. 

Application 2 

This second example considers a geophysical model, 
which describes a realistic representation of a 7.9km x 
16km region in Buzios, Brazil [15]. The properties of the 
model are based on fundamental rock properties that 
exhibit subtle contrasts at the boundaries of the macro-
layer, resulting in realistic synthetic data that is represented 
in Figure 2a. The model is discretized considering a finite 
element mesh with 4,864,312 linear triangular elements, 
and PMLs of 800m are defined at its left, right and bottom 
borders. In this case, for the discussed explicit-implicit 
approach, an optimal time-step of 8.6751x10-4 s is 
computed, resulting in 71.46% explicit elements and 
28.54% implicit elements along the referred mesh, as 
illustrated in Figure 2b. 

As in Tab.1, the performance of the selected techniques 
for this second example are presented in Tab.2, once 
again illustrating the better efficiency of the discussed 
hybrid approach. In Figures 3 and 4, snapshots of the 
computed pressure fields are depicted, considering the 
explicit generalized α method and the studied explicit-
implicit formulation, respectively, illustrating that very 
similar results are obtained by these techniques, although 

Table 1 – Performance of the methods for Application 1 

Method 𝛥𝑡 (10−2 s) Error (10−1 ) CPU Time (s) 

CD 1.8563 5.687 30.56 

EG-α 1.6730 4.914 31.27 

NB 3.4760 4.134 43.21 

New 5.3831 1.443 22.39 

 
Fig.1 – Time history results for application 1. 

 

Table 2 – Performance of the methods for Application 2 

Method Δt (10−3s) CPU Time (s) 

CD 6.4051 10277 

EG-α 5.5394 10562 

NB 11.4665 10781 

New 8.6751 8342 
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the discussed hybrid approach is able to provide more 
efficient evaluations, as described in Tab.2. Finally, in 
Figure 5, the computed αe

n values of the explicit-implicit 
formulation are described, illustrating its adaptive 
behaviour. 

 

 
(a) 

 
(b) 

Fig.3 – Computed results for the EG-α, at different time 
instants: (a) 3s; (b) 4s. 

 
(a) 

 
(b) 

Fig.4 – Computed results for the adaptive explicit-implicit 
technique, at different time instants: (a) 3s; (b) 4s. 

 

 

(b) 

 

(b) 

Fig.5 – αe
n values in the adaptive explicit-implicit analysis: (a) 

3s; (b) 4s. 

Conclusions 

This paper discusses an adaptive explicit-implicit time-
marching technique to analyze wave propagation 
problems. The main characteristics of the discussed 
formulation may be summarized as follows: (i) it stands as 
a very straightforward hybrid approach; (ii) it is locally and 
adaptively defined; (iii) it has guaranteed stability; (iv) it 
stands as an efficient non-iterative single-step procedure; 
(v) it provides enhanced accuracy; (vi) it enables advanced 
controllable algorithmic dissipation; (vii) it considers a link 
between the adopted temporal and spatial discretization 

 
(a) 

 
(b) 

 

Fig.2 – Geological model: (a) layers illustrating the different 
physical properties of the model; (b) implicit (red) and explicit 

(white) subdomains of the model, for the hybrid analysis. 
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procedures; (viii) it is based on a single-solve framework 
that enables reduced systems of equations; (ix) it is truly 
self-starting; (x) it is entirely automated, requiring no input 
or expertise from the user; (xi) by considering optimized 
time-step values, it always becomes more efficient than 
standard purely explicit or implicit formulations. As can be 
seen, the proposed technique is very attractive, providing 
several positive attributes that may be required from a 
highly effective time-marching formulation. 
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